职位详情
AI软件工程师(新能源)
1.5-2万·13薪
索恩格汽车部件(中国)有限公司
长沙
3-5年
本科
09-15
工作地址

索恩格汽车电动系统有限公司

职位描述
岗位职责:
- Design and promote the application scheme of multimodal large models for visual quality inspection (such as defect detection, weld quality analysis), intelligent production scheduling, predictive maintenance and other scenarios in auto parts manufacturing;
针对汽车零部件制造中的视觉质检(如缺陷检测、焊缝质量分析)、智能排产、预测性维护等场景,设计并推动多模态大模型的应用方案;
- Actively track cutting-edge technologies such as multimodal large models, diffusion models, and reinforcement learning, and explore their innovative applications in industrial scenarios such as production process optimization;
积极跟踪多模态大模型、扩散模型、强化学习等前沿技术,探索其在生产流程优化等工业场景的创新应用;
- Build a data perception system for industrial environments, realize the collection and processing of multi-source data (such as images, sensor data, text, etc.), and generate decision-making instructions based on AI models ;
构建面向工业环境的数据感知体系,实现多源数据(如图像、传感器数据、文本等)的采集与处理,并基于AI模型生成决策指令;
- Proficient in and applying RAG (retrieval-augmented generation) and agent task automation to integrate them into the solution;
熟练掌握并应用RAG(检索增强生成)、智能体(Agent)任务自动化等技术,将其融入解决方案
- Refine the results of AI application projects, form standardized industry solutions and typical cases, and use them for external promotion and internal knowledge precipitation, helping to build a closed loop of AI application ecology;
提炼AI应用项目成果,形成标准化的行业解决方案与典型案例,用于对外推广和内部知识沉淀,助力构建AI应用生态闭环;
- Assist in the integration, testing, validation, and deployment of AI projects with existing manufacturing systems (e.g., MES, SCADA, PLC), ensuring project timelines and quality standards are met;
协助完成AI项目与现有制造系统(如MES, SCADA,)的集成、测试验证与上线应用,确保项目进度与质量;
- Data cleaning and data into the lake;
数据清理与数据入湖;
- AI system big data integration and post-maintenance.
AI系统大数据整合以及后期维护。
任职要求:
- 计算机、人工智能、机器学习、数据科学、自动化、机械电子等相关专业本科及以上学历;
- 三年以上AI/机器学习相关项目开发经验,具备完整的AI项目落地经验(从数据到部署);有制造业(尤其是汽车、机械、电子行业)AI项目经验者优先;
- 熟练掌握英文的读写听说,口语好;
- 熟悉计算机信息系统架构,熟练掌握VB、VB.NET、C++、C#、Python、Java(必须)等两种以上开发技术,熟悉主流开发工具;接口开发;
- 熟练使用TensorFlow等深度学习框架;具备容器化(Docker/K8s) 和高性能服务开发经验;
- 熟练使用OpenCV或HalCon;
- 精通机器学习/深度学习框架(如PyTorch, TensorFlow),有时间序列分析(预测性维护)和计算机视觉(缺陷检测)项目经验;
- 掌握异常检测算法(如自编码器、隔离森林)和根因分析方法;
- 了解工业自动化系统(如PLC、SCADA)和常见工业通信协议(如OPC UA, MQTT, Modbus, Profinet)者优先。

以担保或任何理由索取财物,扣押证照,均涉嫌违法,请提高警惕

立即申请